Thermochimica Acta, 16 (1976) 236–239 © Elsevier Scientific Publishing Company, Amsterdam – Printed in Belgium

Note

A thermodynamic study of H–D exchange in the hydrogen–difluoroborane system

ANTHONY J. DESTEFANO, RICHARD J. ROBY AND RICHARD F. PORTER*

Department of Chemistry, Cornell University, Ithaca, N. Y. 14853 (U. S. A.) (Received 12 January 1976)

The hydrogen-deuterium exchange reaction between D_2 and HBF₂ is unique in certain respects due to its unusually fast reaction rate at ordinary temperatures. For this reason it has been possible to observe H-D exchange equilibria for this system and evaluate the thermodynamic properties of HBF₂ and DBF₂. In this paper we present the results of those equilibrium measurements.

EXPERIMENTAL

Mixtures of HBF₂/BF₃ were prepared by a method similar to that of Coyle et al.¹. In a typical synthesis a mixture of BF₃ and B₂H₆ in a molar ratio of 2/1 at a total pressure of 200 torr was heated to 200°C for 0.5 h. in a 1-l stainless steel vessel. Under these reaction conditions HBF₂-BF₃ product mixtures contained 30 to 40% HBF₂ with less than 1% B₂H₆. Mixtures of DBF₂-BF₃ were prepared by reaction of HBF₂-BF₃ mixtures with deuterium gas². Sample purities were checked by infrared and mass spectra.

Equilibrium reactions were carried out by heating a stainless steel vessel containing various proportions of HBF₂, DBF₂, H₂ and D₂ to approximately 110°C for 24 h, then cooling the mixture and allowing it to remain at room temperature for periods of 3 to 5 days prior to mass spectral analysis. The reaction vessel was a 5.25×1.125 -in. O.D. sealed stainless-steel tube with 3×0.37 in. O.D. neck equipped with a Whitey 1KS6 valve. Reaction products were analyzed with a CEC-21-103A mass spectrometer. The pressure ratio of HBF₂/DBF₂ was obtained directly from ion intensity ratios of HBF⁺/DBF⁺. The composition of H₂-HD-D₂ in the product mixture was obtained from intensity measurements of the H⁺₂, HD⁺ D⁺₂ peaks. The sensitivity of the mass spectrometer toward H₂ and D₂ was checked by analyzing standard H₂-D₂ mixtures of known composition. The H₂ used was Fisher high purity grade and D₂ was Air Products Chemical research grade. The BF₃ (Matheson) was used without further purification.

RESULTS AND DISCUSSION

Equilibrium constants were measured for the reactions

$$D_2 + H^{11}BF_2 \rightleftharpoons D^{11}BF_2 + HD \tag{1}$$

$$H_2 + D^{11}BF_2 \rightleftharpoons H^{11}BF_2 + HD \tag{2}$$

at 297.5 \pm 1.0 K. These quantities in combination give K_{eq} for the overall reaction

$$D_2 + 2H^{11}BF_2 \rightleftharpoons H_2 + 2D^{11}BF_2 \tag{3}$$

Initial reaction conditions and the resultant equilibrium constants are shown in Table 1. It was assumed that equilibrium for reaction (1) and (2) was reached when the concentrations of H_2 , HD and D_2 corresponding to the hypothetical reaction*

$$H_2 + D_2 \rightleftharpoons 2HD$$
 (4)

has attained equilibrium values. The measured K_{eq} (eqn (4)) shown in Table 1 are in good agreement with previously calculated^{3,4} and measured^{5,6} values for this equilibrium constant.

Calculation of the entropies and enthalpies for reactions (1)-(3) required knowledge of the six fundamental vibrational frequencies of HBF₂(DBF₂). Of the six only v_5 , the inplane B-H(D) bend has not been observed spectroscopically. The ratio $v_{5,H}/v_{5,D}$ for the B₁ mode is given by the Teller-Redlich product rule⁷

$$\frac{(\mathbf{v}_4\,\mathbf{v}_5)_{\mathrm{H}}}{(\mathbf{v}_4\,\mathbf{v}_5)_{\mathrm{D}}} = \left(\left[\frac{m_{\mathrm{D}}}{m_{\mathrm{H}}}\right]\left[\frac{M_{\mathrm{H}}}{M_{\mathrm{D}}}\right]\left[\frac{I_{z,\mathrm{H}}}{I_{z,\mathrm{D}}}\right]\right)^{1/2}$$

when $m_{\rm H}$ and $m_{\rm D}$ are masses of H and D atoms respectively; $M_{\rm H}$ and $M_{\rm D}$ are the molecular weights of $H^{11}BF_2$ and $D^{11}BF_2$; I_z is the moment of inertia taken about an axis perpendicular to the plane of the molecule; and $v_{4,H}$ (1401.5 cm⁻¹)⁸ and $v_{4,D}$ (1392.5 cm⁻¹)⁸ are the BF asymmetric stretching modes of H¹¹BF₂ and $D^{11}BF_2$, respectively. Using the I_z values of Kasuya et al.⁹ we calculate $v_{5,H}/v_{5,D} =$ 1.357. The other equation needed to calculate $v_{5,H}$ and $v_{5,D}$ was obtained as follows. The entropies of $H^{11}BF_2$ and $D^{11}BF_2$ were calculated by the usual statistical thermodynamic procedure¹⁰. Vibrational partition functions were calculated using the five frequencies given by Porter and Wason⁸ and estimated values for $v_{5,H}$ and $v_{5,D}$ (ref. 11). The entropies of H¹¹BF₂ and D¹¹BF₂ were combined with the tabulated entropies of H₂, HD, and D₂⁵ to obtain $\Delta S_{298.15}^{\circ}$ (eqns (1)-(3). These entropies were used in combination with the K_{eq} from Table 1 to obtain $\Delta H_{298.15}^{\circ}$ (eqns (1)-(3). The $\Delta H^{\circ}_{298.15}$ were corrected to ΔH°_{\circ} (refs. 4 and 10) and these values compared to the zero point energies of reactions (1)-(3) (E_{o}^{c} (eqns (1)-(3) calculated without the use of $v_{5,H}$ and $v_{5,D}$. The resulting energy difference was attributed to $E_{o}^{c}(v_{5,H}) - E_{o}^{o}(v_{5,D})$. Substitution of eqn (5) allowed calculation of new $v_{5,H}$ and $v_{5,D}$

^{*}This reaction is too slow for observation at room temperature.

TABLE I				
EQUILIBRIUM CONSTANTS AT 297.5±1	FOR REACTION	(t)-(1) SN		
Initial composition (H ₃ /D ₃ /HBF ₃ /DBF ₃ /BF ₃)	Piolal (forr)	K ₁₉ (equ (1))	Keq (eqn (2))	K ₁₉ (cqn (3))
1/0.36/0/0.100/0.16	288	4.22	0.78	5.42
1/0.89/0.42/0.35/1.15	171	4,43	0.73	6.05
1/1/1.3/1.0/3.6	150	4.54	0.73	6.20
1/0.89/0.59/0.42/1.25	110	4,49	0.73	6.13
1/1/0.38/0.31/1.11	a 76	4.48	0.76	5.90
Averages ^a	1	4,49 ± 0,05⁵	0.74 ± 0.02	6.07±0.13

K14 (eqn (4))

3.28 3.25 3.32 3.32 3.31±0.06

" First run discounted in average. b Error limits represent one std. dev.

TABLE 2						
THERMOCHEMICAL DATA F	OR REACTIONS (I)-	(3) AT 298 K				
Reaction	∆G° (kcal mol ^{- 1})	ΔS° (e.u.)	ΔH° (kcal mol-1)	v ₃ (H ¹¹ BF ₂) cm ⁻¹	y ₅ (D ¹¹ BF ₂) cm ² ¹	1 1
$D_3 + H^{11}BF_3 = D^{11}BF_3 + HD$	• 10'0 平68'0	0,31±0.05b	- 0,80 - 0,06b	1610±125b	1185±100	
$H_{3} + D^{11}BF_{3} = H^{11}BF_{3} + HD$	0.18±0.02	2.55 ± 0.05	0.94±0.07	1575±175	1160±135	
$D_3 + 2H^{11}BF_2 = 2D^{11}BF_2 + H_2$	-1.07 ±0.02	-2.23 ± 0.05	-1.73±0.07	1590±100	1170±75	

* Error limits = 1 std. dov. b Estimated error limits.

238

values which were then substituted into the appropriate vibrational partition functions and the process repeated. The resultant values for the various thermodynamic quantities are shown in Table 2. The thermodynamic quantities listed are calculated using harmonic oscillator and rigid rotator assumptions for $H^{11}BF_2$ and $D^{11}BF_2$. The v_{5H} and v_{5D} frequencies listed in Table 2 are some-what higher than those calculated by Lynds and Bass¹¹ (1348 and 992 cm⁻¹, respectively) using Greens functions and matrix partitioning techniques, but comparable to the B-H (1604 cm⁻¹) and B-D (1184 cm⁻¹) in plane deformation frequencies of BH₃ and BD₃ observed by Kaldor and Porter¹². The present method of calculation yields v_{5H} and v_{5D} frequencies which are quite sensitive to small changes in $\Delta H^o_{298.15}$ (eqns (1)-(3). Changes of 100-200 cm⁻¹ in the v_{5H} and v_{5D} frequencies do not substantially affect the values for the thermodynamic quantities listed in Table 2.

ACKNOWLEDGEMENT

We are grateful for support of this work by the National Science Foundation (Grant GH 33637) through the Materials Science Center, Cornell University.

REFERENCES

- 1 T. D. Coyle, J. Cooper and J. J. Ritter, Inorg. Chem., 7 (1968) 1014.
- 2 P. M. Curtis and R. F. Porter, Chem. Phys. Let., 37 (1976) 153.
- 3 H. C. Urey and D. Rittenberg, J. Chem. Phys., 1 (1933) 137.
- 4 H. W. Wooley, R. B. Scott and F. G. Brickwedde, J. Res. Nat. Bur. Std., 41 (1948) 379.
- 5 A. J. Gould, W. Bleakney and H. S. Taylor, J. Chem. Phys., 2 (1934) 362.
- 6 D. Rittenberg, W. Bleakney and H. C. Urey, J. Chem. Phys., 2 (1934) 48.
- 7 G. Herzberg, Infrared and Raman Spectra of Polyatomic Molecules¹¹, Van Nostrand, New York, N.Y., 1945, p. 231.
- 8 R. F. Porter and S. K. Wason, J. Phys. Chem., 69 (1965) 2208.
- 9 T. Kasuya, W. J. Lafferty and D. R. Lide, J. Chem. Phys., 48 (1968) 1.
- 10 JANAF Thermochemical Tables, NSRDS-NBS-37 (1971).
- 11 L. Lynds and C. D. Bass, J. Chem. Phys., 43 (1965) 4357.
- 12 A. Kaldor and R. F. Porter, J. Am. Chem. Soc., 93 (1971) 2140.